Rational Inequalities: A rational inequality is an inequality that contains a rational expression. Inequalities such as 3 2 x > 1 , 2 x x − 3 < 4 , 2 x − 3 x − 6 ≥ x , 3 2 x > 1 , 2 x x − 3 < 4 , 2 x − 3 x − 6 ≥ x , and 1 4 − 2 x 2 ≤ 3 x 1 4 − 2 x 2 ≤ 3 x are rational inequalities as they each contain a rational expression.
When solving linear inequalities, there is only one big thing: it is necessary to change the inequality sign when dividing (or multiplying) inequality by a negative number. To change the sign of inequality means to change the sign “less” to sign “more” or vice versa. At the same time, plus and minus signs, bypassing previously studied mathematical rules, should not be changed anywhere.
If we divide or multiply the inequality by a positive number, the sign of the inequality does not need to be changed. The rest of the solution of linear inequalities is completely identical to the solution of linear equations.
In linear and in any other rational inequalities in no case can one multiply or divide the left or right parts of the inequality by expressions containing a variable (except when this expression is positive or negative on the whole numerical axis, in this case when dividing by always negative expression the inequality sign needs to be changed, and when dividing by always a positive expression, the inequality sign needs to be preserved).
Solution of inequalities of the form:
It is carried out using the interval method , which consists of the following:
It should also be noted that it is not necessary to investigate the sign of the function on each interval by substituting some value from this interval. Thus, it is sufficient to define the sign of the function only on one interval (usually on the rightmost one), and then moving from this interval to the left along the numerical axis, the signs of the intervals can be alternated according to the principle:
In this case, the following remarks should be taken into account:
So once again the most important thing: when recording the final answer in inequalities, do not lose individual points that satisfy inequalities (these are the roots of the numerator in non-strict inequalities), and do not forget to exclude all roots of the denominator in all inequalities from the answer.
When solving rational inequalities of a more complex form than indicated above, it is necessary first to reduce them to this form with algebraic transformations, and then apply the interval method with all the subtleties already described. Thus, we can propose the following algorithm for solving rational inequalities :
Moreover, when solving rational inequalities, it is not allowed :
As in other topics in mathematics, when solving rational inequalities, you can use the method of replacing a variable . The main thing to remember is that after introducing a replacement, the new expression should become simpler and not contain the old variable. In addition, you must not forget to perform a reverse replacement.
When solving systems of rational inequalities, it is necessary to solve all inequalities included in the system in turn. The system requires the fulfillment of two or more conditions, and we are looking for those values of an unknown quantity that satisfy all the conditions at once. Therefore, in the answer of the system of inequalities it is necessary to indicate the common parts of all solutions of individual inequalities (or the common parts of all shaded intervals representing the answers of each individual inequality).
When solving sets of rational inequalities, each of the inequalities is also solved in turn. The totality requires finding all the values of a variable that satisfy at least one of the conditions. That is, any of the conditions, several conditions or all the conditions together. In the answer, the totality of inequalities indicate all parts of all solutions of individual inequalities (or all parts of all shaded intervals, representing the answers of each individual inequality).
Inequalities with modules can and should be solved by consistently disclosing modules on intervals of their sign of constancy. Thus, it is necessary to act in the same way as when solving equations with modules (see below). But there are several relatively simple cases in which the solution of inequality with a module reduces to a simpler algorithm. For example, the solution of inequality of the form:
It is reduced to the solution of the system :
In particular, the inequality:
It can be replaced by an equivalent system :
Well, if in a similar inequality replace the sign “less” by “more”:
That his decision comes down to the solution of the totality :
In particular, the inequality:
May be replaced by an equivalent set :
Thus, it is necessary to remember that for the “module less” inequality, we get a system where both conditions must be met simultaneously, and for the “module more” inequality, we get the totality in which any of the conditions must be satisfied.
When solving rational inequalities with a module of the form:
It is advisable to move on to the following equivalent rational inequality without a module:
Such an inequality cannot be solved by extracting the root (if you honestly extract the root, then you need to put the modules again, and you return to the beginning, if you forget about the modules, this is equivalent to forgetting about them at the very beginning, and this is, of course, an error ). All brackets need to be moved to the left and, in any case without opening the brackets, apply the formula for the difference of squares.
Once again, to solve all other types of inequalities with modules other than those indicated above, it is necessary to disclose all modules included in the inequality at intervals of their sign-constancy and solve the resulting inequalities. Recall in more detail the general meaning of this algorithm:
Related Links
Cryptocurrency has captivated the world since Bitcoin's mysterious arrival in 2009. It began as a…
Hello, Guys Welcome to our Website. Today we will give you information about a Famous…
Alkenes are chemical elements with double bonds or carbon double bonds. Its general formula is…
Logical semantics is a branch of logic that focuses on studying the meaning of statements…
The Game Boy Advance (GBA) was a popular handheld gaming system developed using the Game…
Soft Puzzle - Drop The Slime APK - Simple and Easy! But that's why this…